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ABSTRACT 

Characterizations are obtained for matrices C of the form C=AZ, where A, I: are 
n Xn matrices over the real field such that A is symmetric and C is nonnegative 
definite. Among others, a proof of recent generalization of Cochran’s theorem is given. 

1. INTRODUCTION 

We shall be interested only in matrices over the real field R. Mmxn will be 
the set of m X n matrices. W, will be the set of all C = AZ, where A, Z E 

M nXn, A is symmetric, and Z is nonnegative definite. Among other things, we 
shall characterize W, and give a different proof of a generalization of 
Cochran’s theorem [2]. Matrices in W, occur in linear models and multi- 
variate analysis, where Z is the dispersion matrix of a normal random vector 
X, and A is determined by a given quadratic form Y = X’AX of X [l, 91. 

2. CHARACTERIZATIONS OF CERTAIN CLASSES OF MATRICES 

Since A’ is similar to A, below can be replaced by 

PROPOSITION 2.1. Let CEM,,,. Then C=AX for some symmetric mu- 
trix A in Mnxn and some nonnegative definite matrix 2 of rank s if and only 
if C is similar to a matrix of the fn7n 

D 0 
r 1 E 0’ 

where D is a diagonal matrix in Msxs and E E Mcn_s,xs. 
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Proof. Only if: By changing A to P’AP for an orthogonal P such that 
PZP’ is diagonal, we may assume that 2 =diag(G,,O), where G, EM,,, is 
positive definite. Write 

where A,, is an SXS matrix. Then A,, is symmetric and 

Let K=diag(G,‘12, I,_,). Then 

Since Gi/2ArrGi/2 is symmetric, there exist an s Xs orthogonal matrix Q and 

a diagonal matrix D in Msxs such that Gi/2A11Gi/2= QDQ’, Let W= 
diag(Q, I,_,). Then KCK-’ is similar to 

W-‘KCK-‘W= 

where E=A2,G,‘i2Q. Thus C is similar to 

Zf: By hypothesis, 

for some nonsingular mati%% P in M, Xn. Since D is diagonal, D=(d,6if) for 
some real numbers di, where aii is the Kronecker symbol. Let 
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where x = 1, gi =di when di >O, and fi‘=O, gi =1 when di =O. Then 

Let 

P’, c(P’)-‘(E ;)p-1, 

Then C= AZ, A is symmetric, and Z is nonnegative definite of rank s. n 

COROLLARY 2.2. Let CEM,,,. Then C= AZ for some symmetric matrix 
A and positive definite matrix Z if and only if C is similar to a diagonal 
matrix D. 

The following result follows from the above proof of Proposition 2.1. 

PROPOSITION 2.3. Let CE M,,,. Then C=AZ for some nonnegative 
(positive) definite matrix A and positive definite matrix Z if and only if C is 
similar to a nonnegative (positive) deftnite diagonal matrix D. 

We note here that even for n=2, W, contains many matrices that are not 
similar to a diagonal matrix. For example, let 

C=AZ. Then by definition, CE W,. By a direct calculation, 

(and therefore is not symmetric). Since C#O and C2 =O, C is not similar to a 
diagonal matrix. 

We now give a characterization of W, in terms of Jordan forms. 

PROPOSITION 2.4. Let CE M,,,. Then CE W, if and only if each Jordan 
block (in the Jordan form) of C is either a real number or the two by two 
matrix 
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Proof. Zfi Let I= diag( .Ii, I,, . . . , _I,) be the Jordan form of C, where the 
Ji’s are all the Jordan blocks of C. Then C=PJP -’ for some nonsingular 
matrix P. We may assume that _Ii, .I,, . . . , It are real numbers and 
Jt+i, Jt+a,. . * 3 J, are equal to Q. Now let 

Ai=&, Xi-l, i=1,,2 )..., t, 

Ai=( y A), x1=(: :)y i=t+l,t+2 )...) s, 

A=Pdiag(A,,A, ,..., A,)P’, Z=(P’)-‘diag(Z,,Z,,...,Z,)P-‘. 

Then A is symmetric, Z is nonnegative definite, and C=AZ, i.e. CE W,. 
Only $ By Proposition 2.1, there exists a nonsingular P in Mnxn such that 

for some diagonal D in M,,, and E in Mc,_,jx,. Let 

B1=(i i)> B2=(; 8)? B=B, +B,. 

Then C=PBP-‘, BlB2=0, and Bt=O. So B’=BBi-‘, j=1,2 ,... . Let 

$,(A)= 5 a$ (a, =l) 
i=o 

be the minimal polynomial of B,. Since B, is diagonal, 

where the Ai’s are the distinct diagonal entries in B,. In particular, X2 does not 
divide #1(h). Let $s( A) = Xql( h). Then X3 does not divide G2( h), and 

\C/,(B)= 5 aiBi+‘= ~~oaiBB~=Btjl(Bl)=O. 
i=O 
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So the minimal polynomial J/(X) of B divides &(A). Thus: 

(a) Any Jordan block Ji of I? corresponding to a nonzero hi has to be the 
real number hi, a 1 X 1 matrix. 

(b) X3 does not divide #(A). So if h, =O is an eigenvalue of B, then each 
Jordan block Ji of B corresponding to h, must be either the 1 X 1 matrix (0) or 
the 2 X 2 matrix Q [5]. 

Since C is similar to B, (a) and (b) above complete the proof. 

The above result provides some information about W,: 

(1) If CE W,, and if J is the Jordan form of C, then the rank of C is equal 
to the number of nonzero entries in 1. 

(2) If CE W, and if i is even, then Ci is similar to a diagonal matrix. 
(3) A E W, if and only if A’ E W,,. 
(4) The family of nondiagonalizable matrices in W, can be described. For 

example, CE W, is not diagonalizable if and only if C is similar to Q. 
(5) Even for n=2, Mnxn contains a lot of matrices which are not in W,. 

Indeed CE Mzxz\ W, and C has a Jordan form in M, x2 if and only if C is 

similar to 
( 1 

; i for some nonzero a. 

The following fairly strong decomposition about CE W, also follows easily 
from the above proposition. 

PROPOSITION 2.5. Let CEM,,,. Then CE W,, if and only if there exist 
A, BEM,,, such that 

(a) there exists a non-singular P in Mnxn such that P-‘AP, P-‘BP are the 
Jordan forms of A, B respectively, 

(b) A similar to a diagonal matrix, 
(c) B2=0, 
(d) AB=O, 
(e) C=A+B. 

The above result tells us that C E W,, is at most, a little bit (= B) short of 
being diagonalizable. The following also follows easily from Proposition 2.4. 

PROPOSITION 2.6. Let CEM,,,. Then 

(a) CE W, if C3=C2, 
($3) C3=C2ifCEW,anda(C)C{0,1}, 
(c) C4=C2ifCEW,ando(C)C(0,1,-1). 
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Idempotents arise in the study of linear models and Cochran’s theorem [3] 
(e.g., see [6, 7, 10, 11, 21). The following known result shows that ah 
idempotents are in W,,. For any linear function f on a linear space R”, denote 
by F’ the set {x: f(x) = x} of alI fixed points of f, by ker f the kernel 

F;F)=O’ of f? and by Im f the image set {f(x):xER”} of f. Let 
,,xn. We shah treat C as the linear transformation f: f(x)=&, PER”. 

ImC is easily seen to be the column space of C. The dimension of a linear 
space L is denoted by dim L. 

PROPOSITION 2.7. Let CEM,,,. Then the following conditions are 
equivalent: 

(a) C2=C. 
(b) R” = F, + ker C. 
(c) C is similar to a diagonal idempotent D. 
(d) F, = Im C. 

It is hinted here idempotence is related to fixed points. This observation 
can be expanded. If C is an idempotent, then C is a generalized inverse C - of 
C. Let HEM,,,, KEM,,,. Then H is a generalized inverse of K if and 
only if FKH = Im K. In other words, how far a generalized inverse H of K is 
from being an inverse of K can be measured by the size of FKH. In particular, 
if m =n and K has an inverse H, then FKH = R”, which is of the largest 
possible size. On the other hand, if K =O, then any HEM, x 11 is a generalized 
inverse of K and FKH = {0}, which is of the smallest possible size and suggests 
that H may not be much of an inverse of K. 

To see how C in Proposition 2.3 occurs in statistics, we prove the 
following. We emphasize here that unlike Searle [9, p. 571, Good [4], or 
Nagase and Banejee [8], we do not assume that X’AX has a central chi 
squared distribution. 

PROPOSITION 2.8. Let A, Z EM,,, such that A is symmetric and Z is 
nonnegative definite. Let X be a normal random vector with parameter (0, Z) 
such that Y = X’AX bus a chi squared distribution. Then a(AZ) C (0, 1). 

Proof. Since Y has a chi squared distribution, for some m E Z + , ~20, 
the rth cumulant K, of Y is [9] 

K,=2’-‘(r-l)!(m+2m), r=1,2,... . 

Since X is normal, K, =2r-1(r- l)!tr((AZ)‘) [9], which implies that 

m+2sr=tr((AZ)‘)= i xi, (2.1) 
i=l 
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where {Xi} is the spectrum of AZ. If one of IX,], say Ihi,], is greater than 1, 
then by (2.1) 

x2.p -_m 

s> lim l”=~ 
p-m 4P ’ 

a contradiction. So all A i E [ - 1, 11. By (2.1) 

i ?ci - m 

s= Iim i=l 

2r 
=o, 

r-m 

sothata(AZ)~{O,1}. n 

Good concluded in [4] that AZ above is an idempotent. Styan [lo] 
pointed out that AZ need not be idempotent. Now by Proposition 2.4, we can 
give a characterization of AZ under which AZ is an idempotent. 

PROPOSITION 2.9. Let CE W,, such that a(C) C (0, l}. Then the follow- 
ing conditions are equivalent: 

(a) C is an idempotent. 
(b) C is diagonulizuble. 
(c) r(C)=trC. 
(d) r(C)=r(C2). 

We now investigate conditions on A and/or Z under which AZ is an 
idempotent. In this regard, we obtain the following result. Recall that for any 

*-L+n’ ker X’X = ker X, so that we can cancel X’ whenever X’XA = X’XB. 

PROPOSITION 2.10. Let A, Z EM,,, such that A and Z are nonnegative 
definite and u( AZ) C (0, 1). Then AZ is an idempotent. 

Proof. By Proposition 2.6, AZAZAZ=AZAZ. By canceling AZ’j2 we 
obtain 2’/2AZAZ=2’/2AZ. Again, canceling Z’/2A1/2, we obtain A112ZA): 
=A’/2Z. Multiplication by AlI2 on the left yields AZAZ =AZ. n 

If one is interested in C in W, with C4 = C2 (see e.g. Tan [ll]) then C2 is 
diagonalizable. In fact C2 is diagonahzable for all CE W,. 

PROPOSITION 2.11. Let A, B, CEM,,, such that A=B+C, A2=A, and 
r(A)=r(B)+r(C). Then B,C are idempotents and BC=CB=O. 
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Proof 
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r(A)=dimImA~dim(ImB+ImC) 

=dimIm B+dimImC-dimIm BnImC 

=r(B)+r(C)-dimImBnImC. 

Since r(A)=r(B)+r(C), 

Im BnImC= (0) w-3 

and 

ImA=ImB+ImC. (2.3) 

Let xEImB. By (2.3), xEIm A. Since A’=A, Ax=x. So x-Bx=Cx. By 
(2.2), x-Bx=Cx=O. Thus F,=ImB. By Proposition 2.7, B2=B. Similarly 
C2=C. Let XER”. Since A2=A, Xx=-CBx. By (2.2), Xx=-C&=0. 
Hence BC= CB = 0. n 

With Propositions 2.4 and 2.11, we can give shorter proofs for the 

following two propositions. 

PROPOSITION 2.12. Let CE M,,, such that C2 = C3. Then C is an 

idempotent ifandonZyifr(C)=trC~rr(C)=r(C~). 

PROPOSITION 2.13. Let A,, A,, . . . , A, be nXn matrices and let A= 
Zf=,Ai. Consider the following conditions: 

(a) All Ai are idempotent. 
(b) A,A,=O for all i#i and r(A;)=r(A,), i-1,2,..., k. 
(c) A is an idempotent. 

(d) r(A)=Z;zIr(Ai). 

Then 

(i) any two of (a), (b), and (c) imply all (a)-(d); 
(ii) (c) and (d) imply (a) and (b). 

The author is partially supported by NRC Grant A8518 and wishes to 
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